TABLE I

 The Effect of the Route Taken to Reach Equilibrium (Partial Acidification) on the Resultant Fractionation

Starting material	Neutralization history	IV of liquid acids
Tallow fatty acids IV 63	(a) 1.0 eq. NaOH, then 0.5 eq. HCl (b) 1.0 eq. NaOH, then CO ₂ to pH 7.5	91.4 98.8
Fish fatty acids IV 196	(a) 1.0 eq. NaOH, then 0.5 eq. HCl (b) 0.5 eq. NaOH	$\begin{smallmatrix}233\\236\end{smallmatrix}$
	(c) 1.0 eq. NaOH, then CO ₂ to pH 7.5	238
Mixed vegetable Dist. fatty acids	(a) 1.0 eq. NaOH, then 0.5 eq. HCl	119
IV 83	(b) 0.5 eq. NaOH	117
Soybean fatty acids IV 122	(a) 1.0 eq. NaOH, then 0.5 eq. HCl (b) 0.5 eq. NaOH	$\begin{smallmatrix}146\\143\end{smallmatrix}$

Obviously the required equilibrium for the formation of acid soaps can be approached by several means without greatly affecting the resultant fractionation, and that the cheaper inorganics can be used instead of CO₂. It was surprising that one equivalent of fatty acids would dissolve in only $\frac{1}{2}$ an equivalent of aqueous alkali.

The Physical Separation of Acid Soaps on a Larger Scale. While with flotation and centrifugation some separation of the solid acid soaps was effected, it was felt that a more positive separation method was required. Consequently, filtration was again studied.

As reported in Part I, filtration without a filter aid was impossible. Even with a filter aid in considerable quantity, the filtration rate was slow and produced unacceptable solids. However the work on settling gave the know-how necessary to grow a superior type of crystal, and it was expected that some degree of success would be attained with filtration. Since washing was essential to produce low IV solids, a continuous precoat vacuum filter was selected for the test work. This was an Oliver 12 x 2 inch Laboratory Precoat Filter. Table II gives the filtration rates obtained.

TABLE II Pilot Plant Filtrations of Acid Soaps on an Oliver Continuous Precoat Filter (Drum Speed-15 rph)

Fatty acid raw material	Soap soln. %	Degree of shave in./rev.	Dura- tion of test hr.	Filtra- tion rate gal/ft ² /hr	IV of Solid acids	IV of liquid acids
Fish oil IV 196	6.4	0.010	1½	6.5	88	238
	4.0	0.010	1%	9.4	72	236
	5.3	0.005	11/2	5.9	41	225
Cottonseed	4.7	0.010	3⁄4	13.5	24	122
Fatty acids IV 96	4.7	0.005	2	6.0	25	122
Soybean fatty acids IV 122	5.6	0.010	25%	9.8	70	136

While the filtration rates were only fair, it was found that the use of a precoat continuous filter for the solid acid soaps was practical.

The Application of the Acid Soap Separation to Stocks Other than Tallow. Since this process works for separating the fatty acids present in tallow, it would be expected to perform similarly on cottonseed, fish, and soybean fatty acids. A number of examples of the fractionations of other fatty acids have pre-

Erratum. Vol. 39, page 70, January, 1962, Lyon ET AL.: SOLVENT-BLOWN, RIGID URETHANE FOAMS. The passage beginning with the last 1 lines, first column, on page 70 should read:

The average equivalent weight of the polyol mixtures was varied from 70 to 120 and castor oil content from 11 to 58%.

The compressive strengths of foams prepared from

viously been cited. Table III shows further results on the various raw materials tested.

TABLE III					
The Separation	of Distilled	Fatty	Acid	Mixtures	

Fatty acid raw material		Separa- tion	Solid	Liquid acids	
Туре	IV	°C.	IV	IV	% Yield
Cottonseed	96.0	6	24.2	121	74
	96.0	10	24.4	122	73
	98.8	$ \begin{array}{c} 10 \\ 5 \\ 5 \\ 15 \\ 15 \\ 15 \\ 15 \\ \end{array} $	41.7	135	61
	98.8	5	25.9ª	135	67
	98.8	15	35.8	129	68
	98.8		20.6 a	128	73
	98.8	25	32.1	119	77
	98.8	25	16.0 ª	118	81
Fish	196	5	88.4	238	72
Mixed vegetable	82.5	9	13.2	122	64
Soybean	120	10	57.0	140	76
Tallow	43.4	12	17.8	85.2	38
	56.9		20.0	101	46
	56.9	15	17.5	96.4	50
	56.9	25	19.4	86.2	56
	56.9	25	14.9ª	88.0	57
	63.0	11	30.4	98.8	48
	63.0	11	25.7 ª	98.8	51

^a Indicates that the solid acids were washed to free them of mother liquor.

Since this process entails the formation of a soap solution, it might naturally be expected that it would find its most economic application in the fractionation of the foots produced on refining vegetable and fish oils. Here the alkali necessary for the operation of the process is already present, and acid has to be added in any case. Consequently, it was attempted to fractionate raw soapstocks that had been further treated with alkali to saponify the neutral oil present. See Table IV.

TABLE IV

The Separation	of	Raw	Soapstock
----------------	----	-----	-----------

Soapstock raw material		Separa- tion	Solid acids	Liquid acids	
Туре	IV ^a	temp. °C	IV	IV	% Yield
Fish	172	9	33.5	227	72
Cottonseed	103 103 103 103 103 104		41.6 72.1 42.8 ^b 45.9 47.3	$132 \\ 127 \\ 129 \\ 114 \\ 136$	$67 \\ 54 \\ 69 \\ 84 \\ 64$
Peanut	90.5	15	16.9	103	86

^a IV of the total fatty matter present. ^b Indicates solids acids were washed to free them of mother liquor.

It is evident that this separation procedure can be used to advantage on foots as well as distilled and undistilled fatty acids (2).

In handling soap stocks, the electrolyte content of the completely saponified solution prior to fractionation must be watched. Whereas the fractionation will work in the presence of 5 g per l of sodium chloride or sulphate, twice this amount will prevent the process from operating at all.

REFERENCES

[Received November 27, 1961]

these polyol mixtures are shown in Fig. 1. Here the compressive strength of foams calculated to 2 lb./ft.³ density is plotted *versus* average polyol equivalent weight. The castor oil content of the polyols used is indicated below the curve. The prepolymer used was the same as that described previously (6) and contained 10.3% pentaerythritol monoricinoleate, 10.3% trimethylolpropane and 79.4% toluenediisocyanate.